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NUMA (Non-Uniform Memory Access):  
An Overview

NUMA becomes more common because memory controllers get close to  
execution units on microprocessors.

Christoph Lameter, Ph.D.

NUMA (non-uniform memory access) is the phenomenon that memory at various points in the 
address space of a processor have different performance characteristics. At current processor speeds, 
the signal path length from the processor to memory plays a significant role. Increased signal path 
length not only increases latency to memory but also quickly becomes a throughput bottleneck 
if the signal path is shared by multiple processors. The performance differences to memory were 
noticeable first on large-scale systems where data paths were spanning motherboards or chassis. 
These systems required modified operating-system kernels with NUMA support that explicitly 
understood the topological properties of the system’s memory (such as the chassis in which a 
region of memory was located) in order to avoid excessively long signal path lengths. (Altix and UV, 
SGI’s large address space systems, are examples. The designers of these products had to modify the 
Linux kernel to support NUMA; in these machines, processors in multiple chassis are linked via a 
proprietary interconnect called NUMALINK.)

Today, processors are so fast that they usually require memory to be directly attached to the socket 
that they are on. A memory access from one socket to memory from another has additional latency 
overhead to accessing local memory—it requires the traversal of the memory interconnect first. 
On the other hand, accesses from a single processor to local memory not only have lower latency 
compared to remote memory accesses but do not cause contention on the interconnect and the 
remote memory controllers. It is good to avoid remote memory accesses. Proper placement of data 
will increase the overall bandwidth and improve the latency to memory.

As the trend toward improving system performance by bringing memory nearer to processor 
cores continues, NUMA will play an increasingly important role in system performance. Modern 
processors have multiple memory ports, and the latency of access to memory varies depending even 
on the position of the core on the die relative to the controller. Future generations of processors will 
have increasing differences in performance as more cores on chip necessitate more sophisticated 
caching. As the access properties of these different kinds of memory continue to diverge, operating 
systems may need new functionality to provide good performance. 

NUMA systems today (2013) are mostly encountered on multisocket systems. A typical high-
end business-class server today comes with two sockets and will therefore have two NUMA nodes. 
Latency for a memory access (random access) is about 100 ns. Access to memory on a remote node 
adds another 50 percent to that number.

Performance-sensitive applications can require complex logic to handle memory with diverging 
performance characteristics. If a developer needs explicit control of the placement of memory for 
performance reasons, some operating systems provide APIs for this (for example, Linux, Solaris, 
and Microsoft Windows provide system calls for NUMA). However, various heuristics have 
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been developed in the operating systems that manage memory access to allow applications to 
transparently utilize the NUMA characteristics of the underlying hardware. 

A NUMA system classifies memory into NUMA nodes (which Solaris calls locality groups). All 
memory available in one node has the same access characteristics for a particular processor. Nodes 
have an affinity to processors and to devices. These are the devices that can use memory on a NUMA 
node with the best performance since they are locally attached. Memory is called node local if it 
was allocated from the NUMA node that is best for the processor. For example, the NUMA system 
exhibited in Figure 1 has one node belonging to each socket, with four cores each.

The process of assigning memory from the NUMA nodes available in the system is called NUMA 
placement. As placement influences only performance and not the correctness of the code, heuristic 
approaches can yield acceptable performance. In the special case of noncache-coherent NUMA 
systems, this may not be true since writes may not arrive in the proper sequence in memory. 
However, there are multiple challenges in coding for noncache-coherent NUMA systems. We restrict 
ourselves here to the common cache-coherent NUMA systems.

The focus in these discussions will be mostly on Linux since this operating system has refined 
NUMA facilities and is widely used in performance-critical environments today. The author was 
involved with the creation of the NUMA facilities in Linux and is most familiar with those.

Solaris has somewhat comparable features (see http://docs.oracle.com/cd/E19963-01/html/820-
1691/gevog.html; http://docs.oracle.com/cd/E19082-01/819-2239/6n4hsf6rf/index.html; and http://
docs.oracle.com/cd/E19082-01/819-2239/madv.so.1-1/index.html), but the number of systems 
deployed is orders of magnitude less. Work is under way to add support to other Unix-like operating 
systems, but that support so far has been mostly confined to operating-system tuning parameters 
for placing memory accesses. Microsoft Windows also has a developed NUMA subsystem that allows 
placing memory structures effectively, but the software is used mostly for enterprise applications 
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rather than high-performance computing. Memory-access speed requirements for enterprise-class 
applications are frequently more relaxed than in high-performance computing, so less effort is spent 
on NUMA memory handling in Windows than in Linux.

HOW OPERATING SYSTEMS HANDLE NUMA MEMORY
There are several broad categories in which modern production operating systems allow for the 
management of NUMA: accepting the performance mismatch, hardware memory striping, heuristic 
memory placement, a static NUMA configurations, and application-controlled NUMA placement.

IGNORE THE DIFFERENCE    

Since NUMA placement is a best-effort approach, one option is simply to ignore the possible 
performance benefit and just treat all memory as if no performance differences exist. This means 
that the operating system is not aware of memory nodes. The system is functional, but performance 
varies depending on how memory happens to be allocated. The smaller the differences between local 
and remote accesses, the more viable this option becomes. 

This approach allows software and the operating system to run unmodified. Frequently, this is 
the initial approach for system software when systems with NUMA characteristics are first used. 
The performance will not be optimal and will likely be different each time the machine and/
or application runs, because the allocation of memory to performance-critical segments varies 
depending on the system configuration and timing effects on boot-up.

MEMORY STRIPING IN HARDWARE

Some machines can set up the mapping from memory addresses to the cache lines in the nodes 
in such a way that consecutive cache lines in an address space are taken from different memory 
controllers (interleaving at the cache-line level). As a result, the NUMA effects are averaged out 
(since structures larger than a cache line will then use cache lines on multiple NUMA nodes). 
Overall system performance is more deterministic compared with the approach of just ignoring the 
difference, and the operating system still does not need to know about the difference in memory 
performance, meaning no NUMA support is needed in the operating system. The danger of 
overloading a node is reduced since the accesses are spread out among all available NUMA nodes.

The drawback is that the interconnect is in constant use. Performance will never be optimal since 
the striping means that cache lines are frequently accessed from remote NUMA nodes.

HEURISTIC MEMORY PLACEMENT FOR APPLICATIONS    

If the operating system is NUMA-aware (under Linux, NUMA must be enabled at compile time 
and the BIOS or firmware must provide NUMA memory information for the NUMA capabilities 
to become active; NUMA can be disabled and controlled at runtime with a kernel parameter), it is 
useful to have measures that allow applications to allocate memory in ways that minimize signal 
path length so performance is increased. The operating system has to adopt a policy that maximizes 
performance for as many applications as possible. Most applications run with improved performance 
using the heuristic approach, especially compared with the approaches discussed earlier.

A NUMA-aware operating system determines memory characteristics from the firmware and 
can therefore tune its own internal operations to the memory configuration. Such tuning requires 
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coding effort, however, so only performance-critical portions of the operating system tend to get 
optimized for NUMA affinities, whereas less-performance-critical components tend to operate on the 
assumption that all memory is equal.

The most common assumptions made by the operating system are that the application will run 
on the local node and that memory from the local node is to be preferred. If possible, all memory 
requested by a process will be allocated from the local node, thereby avoiding the use of the cross-
connect. The approach does not work, though, if the number of required processors is higher than 
the number of hardware contexts available on a socket (when processors on both NUMA nodes 
must be used); if the application uses more memory than available on a node; or if the application 
programmer or the scheduler decides to move application threads to processors on a different socket 
after memory allocation has occurred.

In general, small Unix tools and small applications work very well with this approach. Large 
applications that make use of a significant percentage of total system memory and of a majority of 
the processors on the system will often benefit from explicit tuning or software modifications that 
take advantage of NUMA.

Most Unix-style operating systems support this mode of operation. Notably, FreeBSD and Solaris 
have optimizations to place memory structures to avoid bottlenecks. FreeBSD can place memory 
round-robin on multiple nodes so that the latencies average out. This allows FreeBSD to work better 
on systems that cannot do cache-line interleaving on the BIOS or hardware level (additional NUMA 
support is planned for FreeBSD 10). Solaris also replicates important kernel data structures per 
locality group.

SPECIAL NUMA CONFIGURATION FOR APPLICATIONS

The operating system provides configuration options that allow the operator to tell the operating 
system that an application should not be run with the default assumptions regarding memory 
placement. It is possible to establish memory-allocation policies for an application without 
modifying code.

Command-line tools exist under Linux that can set up policies to determine memory affinities 
(taskset, numactl). Solaris has tunable parameters for how the operating system allocates memory 
from locality groups. These are roughly comparable to Linux’s process memory-allocation policies.

APPLICATION CONTROL OF NUMA ALLOCATIONS

The application may want fine-grained control of how the operating system handles allocation 
for each of its memory segments. For that purpose, system calls exist that allow the application to 
specify which memory region should use which policies for memory allocations.

The main performance issues typically involve large structures that are accessed frequently by the 
threads of the application from all memory nodes and that often contain information that needs 
to be shared among all threads. These are best placed using interleaving so that the objects are 
distributed over all available nodes.

HOW DOES LINUX HANDLE NUMA?
Linux manages memory in zones. In a non-NUMA Linux system, zones are used to describe memory 
ranges required to support devices that are not able to perform DMA (direct memory access) to all 
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memory locations. Zones are also used to mark memory for other special needs such as movable 
memory or memory that requires explicit mappings for access by the kernel (HIGHMEM), but that 
is not relevant to the discussion here. When NUMA is enabled, more memory zones are created and 
they are also associated with NUMA nodes. A NUMA node can have multiple zones since it may be 
able to serve multiple DMA areas. How Linux has arranged memory can be determined by looking 
at /proc/zoneinfo. The NUMA node association of the zones allows the kernel to make decisions 
involving the memory latency relative to cores.

On boot-up, Linux will detect the organization of memory via the ACPI (Advanced Configuration 
and Power Interface) tables provided by the firmware and then create zones that map to the NUMA 
nodes and DMA areas as needed. Memory allocation then occurs from the zones. Should memory 
in one zone become exhausted, then memory reclaim occurs: the system will scan through the least 
recently used pages trying to free a certain number of pages. Counters that show the current status 
of memory in various nodes/zones can also be seen in /proc/zoneinfo. Figure 2 shows types of 
memory in a zone/node.

free memory

unmapped page cache
(e.g. cached disk contents)

page mapped to processes
(e.g. text segments, mmapped �les)

anonymous pages
(e.g. stack, heap)

dirty or writeback pages (disk I/O e.g.)

unevictable pages (mlock e.g.)

kernel, driver and unreclaimable slab memory

Types of Memory in a Zone/Node
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MEMORY POLICIES

How memory is allocated under NUMA is determined by a memory policy. Policies can be specified 
for memory ranges in a process’s address space, or for a process or the system as a whole. Policies for 
a process override the system policy, and policies for a specific memory range override a process’s 
policy.

The most important memory policies are:
NODE LOCAL. The allocation occurs from the memory node local to where the code is currently 

executing.
INTERLEAVE. Allocation occurs round-robin. First a page will be allocated from node 0, then from 

node 1, then again from node 0, etc. Interleaving is used to distribute memory accesses for structures 
that may be accessed from multiple processors in the system in order to have an even load on the 
interconnect and the memory of each node.

There are other memory policies that are used in special situations, which are not mentioned here 
for brevity’s sake. The two policies just mentioned are generally the most useful and the operating 
system uses them by default. NODE LOCAL is the default allocation policy if the system is up and 
running.

The Linux kernel will use the INTERLEAVE policy by default on boot-up. Kernel structures created 
during bootstrap are distributed over all the available nodes in order to avoid putting excessive load 
on a single memory node when processes require access to the operating-system structures. The 
system default policy is changed to NODE LOCAL when the first userspace process (init daemon) is 
started.

The active memory allocation policies for all memory segments of a process (and information that 
shows how much memory was actually allocated from which node) can be seen by determining the 
process id and then looking at the contents of /proc/<pid>/numa_maps. 

BASIC OPERATIONS ON PROCESS STARTUP

Processes inherit their memory policy from their parent. Most of the time the policy is left at the 
default, which means NODE LOCAL. When a process is started on a processor, memory is allocated 
for that process from the local NUMA node. All other allocations of the process (through growing 
the heap, page faults, mmap, and so on) will also be satisfied from the local NUMA node.

The Linux scheduler will attempt to keep the process cache hot during load balancing. This means 
the scheduler’s preference is to leave the process on processors that share the L1-processor cache, 
then on processors that share L2, and then on processors that share L3, with the processor that the 
process ran on last. If there is an imbalance beyond that, the scheduler will move the process to any 
other processor on the same NUMA node.

As a last resort the scheduler will move the process to another NUMA node. At that point the code 
will be executing on the processor of one node, while the memory allocated before the move has 
been allocated on the old node. Most memory accesses from the process will then be remote, which 
will cause the performance of the process to degrade.

There has been some recent work in making the scheduler NUMA-aware to ensure that the pages 
of a process can be moved back to the local node, but that work is available only in Linux 3.8 and 
later, and is not considered mature. Further information on the state of affairs may be found on the 
Linux kernel mailing lists and in articles on lwn.net.
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RECLAIM

Linux typically allocates all available memory in order to cache data that may be used again later. 
When memory begins to be low, reclaim will be used to find pages that are either not in use or 
unlikely to be used soon. The effort required to evict a page from memory and to get the page back 
if needed varies by type of page. Linux prefers to evict pages from disk that are not mapped into any 
process space because it is easy to drop all references to the page. The page can be reread from disk if 
it is needed later. Pages that are mapped into a process’s address space require that the page first be 
removed from that address space before the page can be reused. A page that is not a copy of a page 
from disk (anonymous pages) can be evicted only if the page is first written out to swap space (an 
expensive operation). There are also pages that cannot be evicted at all, such as mlocked() memory 
or pages in use for kernel data.

The impact of reclaim on the system can therefore vary. In a NUMA system multiple types of 
memory will be allocated on each node. The amount of free space on each node will vary. So if there 
is a request for memory and using memory on the local node would require reclaim but another 
node has enough memory to satisfy the request without reclaim, the kernel has two choices:
•  Run a reclaim pass on the local node (causing kernel processing overhead) and then allocate node-

local memory to the process.
•  Just allocate from another node that does not need a reclaim pass. Memory will not be node local, 

but we avoid frequent reclaim passes. Reclaim will be performed when all zones are low on free 
memory. This approach reduces the frequency of reclaim and allows more of the reclaim work to 
be done in a single pass.
For small NUMA systems (such as the typical two-node servers) the kernel defaults to the second 

approach. For larger NUMA systems (four or more nodes) the kernel will perform a reclaim in order 
to get node-local memory whenever possible because the latencies have higher impacts on process 
performance.

There is a knob in the kernel that determines how the situation is to be treated in /proc/sys/
vm/zone_reclaim. A value of 0 means that no local reclaim should take place. A value of 1 tells the 
kernel that a reclaim pass should be run in order to avoid allocations from the other node. On boot-
up a mode is chosen based on the largest NUMA distance in the system.

If zone reclaim is switched on, the kernel still attempts to keep the reclaim pass as lightweight 
as possible. By default, reclaim will be restricted to unmapped page-cache pages. The frequency 
of reclaim passes can be further reduced by setting /proc/sys/vm/min_unmapped_ratio to the 
percentage of memory that must contain unmapped pages for the system to run a reclaim pass. The 
default is 1 percent. 

Zone reclaim can be made more aggressive by enabling write-back of dirty pages or the swapping 
of anonymous pages, but in practice doing so has often resulted in significant performance issues.

BASIC NUMA COMMAND-LINE TOOLS

The main tool used to set up the NUMA execution environment for a process is numactl. Numactl 
can be used to display the system NUMA configuration, and to control shared memory segments. 
It is possible to restrict processes to a set of processors, as well as to a set of memory nodes. Numactl 
can be used, for example, to avoid task migration between nodes or restrict the memory allocation 
to a certain node. Note that additional reclaim passes may be required if the allocation is restricted. 
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Those cases are not influenced by zone-reclaim mode because the allocation is restricted by a 
memory policy to a specific set of nodes, so the kernel cannot simply pick memory from another 
NUMA node.

Another tool that is frequently used for NUMA is taskset. It basically allows only binding of a 
task to processors and therefore has only a subset of numactl’s capability. Taskset is heavily used in 
non-NUMA environments, and its familiarity results in developers preferring to use taskset instead 
of numactl on NUMA systems.

NUMA INFORMATION

There are numerous ways to view information about the NUMA characteristics of the system and of 
various processes currently running. The hardware NUMA configuration of a system can be viewed 
by using numactl –hardware. This includes a dump of the SLIT (system locality information table) 
that shows the cost of accesses to different nodes in a NUMA system. The example below shows a 
NUMA system with two nodes. The distance for a local access is 10. A remote access costs twice as 
much on this system (20). This is the convention, but the practice of some vendors (especially for 
two-node systems) is simply to report 10 and 20 without regard to the actual latency differences to 
memory.

$ numactl --hardware
available: 2 nodes (0-1) 
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
node 0 size: 131026 MB 
node 0 free: 588 MB 
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 
node 1 size: 131072 MB 
node 1 free: 169 MB 
node distances: 
node   0   1 
  0:  10  20 
  1:  20  10 

Numastat is another tool that is used to show how many allocations were satisfied from the local 
node. Of particular interest is the numa_miss counter, which indicates that the system assigned 
memory from a different node in order to avoid reclaim. These allocations also contribute to other 
node. The remainder of the count is intentional off-node allocations. The amount of off-node 
memory can be used as a guide to figure out how effectively memory was assigned to processes 
running on the system.

$ numastat 
                node0        node1 
numa_hit        13273229839  4595119371 
numa_miss       2104327350   6833844068 
numa_foreign    6833844068   2104327350 
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interleave_hit  52991        52864 
local_node      13273229554  4595091108 
other_node      2104327635   6833872331 

How memory is allocated to a process can be seen via a status file in /proc/<pid>/numa_maps:

# cat /proc/1/numa_maps
7f830c175000 default anon=1 dirty=1 active=0 N1=1 
7f830c177000 default file=/lib/x86_64-linux-gnu/ld-2.15.so anon=1 dirty=1 active=0 N1=1 
7f830c178000 default file=/lib/x86_64-linux-gnu/ld-2.15.so anon=2 dirty=2 active=0 N1=2 
7f830c17a000 default file=/sbin/init mapped=18 N1=18 
7f830c39f000 default file=/sbin/init anon=2 dirty=2 active=0 N1=2 
7f830c3a1000 default file=/sbin/init anon=1 dirty=1 active=0 N1=1 
7f830dc56000 default heap anon=223 dirty=223 active=0 N0=52 N1=171 
7fffb6395000 default stack anon=5 dirty=5 active=1 N1=5 

The output shows the virtual address of the policy and then some information about the NUMA 
characteristics of the memory range. Anon means that the pages do not have an associated file on 
disk. Nx shows the number of pages on the respective node.

The information about how memory is used in the system as a whole is available in /proc/
meminfo. The same information is also available for each NUMA node in /sys/devices/system/
node/node<X>/meminfo. Numerous other bits of information are available from the directory where 
meminfo is located. It is possible to compact memory, get distance tables, and manage huge pages and 
mlocked pages by inspecting and writing values to key files in that directory.

FIRST-TOUCH POLICY

Specifying memory policies for a process or address range does not cause any allocation of memory, 
which is often confusing to newcomers. Memory policies specify what should happen when the 
system needs to allocate memory for a virtual address. Pages in a process’s memory space that have 
not been touched or that are zero do not have memory assigned to them. The processor will generate 
a hardware fault when a process touches or writes to an address (page fault) that is not yet populated. 
During page-fault handling by the kernel, the page is allocated. The instruction that caused the fault 
is then restarted and will be able to access the memory as needed.

What matters, therefore, is the memory policy in effect when the allocation occurs. This is called 
the first touch. The first-touch policy refers to the fact that a page is allocated based on the effective 
policy when some process first uses a page in some fashion.

The effective memory policy on a page depends on memory policies assigned to a memory range 
or on a memory policy associated with a task. If a page is only in use by a single thread, then there is 
no ambiguity as to which policy will be followed. However, pages are often used by multiple threads. 
Any one of them may cause the page to be allocated. If the threads have different memory policies, 
then the page may as a result seem to be allocated in surprising ways for a process that also sees the 
same page later.

For example, it is fairly common that text segments are shared by all processes that use the same 
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executable. The kernel will use the page from the text segment if it is already in memory regardless of 
the memory policy set on a range. The first user of a page in a text segment will therefore determine 
its location. Libraries are frequently shared among binaries, and especially the C library will be used 
by almost all processes on the system. Many of the most-used pages are therefore allocated during 
boot-up when the first binaries run that use the C library. The pages will at that point become 
established on a particular NUMA node and will stay there for the time that the system is running.

First-touch phenomena limit the placement control that a process has over its data. If the distance 
to a text segment has a significant impact on process performance, then dislocated pages will have to 
be moved in memory. Memory could appear to have been allocated on NUMA nodes not permitted 
by the memory policy of the current task because an earlier task has already brought the data into 
memory.

MOVING MEMORY

Linux has the capability to move memory. The virtual address of the memory in the process space 
stays the same. Only the physical location of the data is moved to a different node. The effect can be 
observed by looking at /proc/<pid>/numa_maps before and after a move.

Migrating all of a process’s memory to a node can optimize application performance by avoiding 
cross-connect accesses if the system has placed pages on other NUMA nodes. However, a regular user 
can move only pages of a process that are referenced only by that process (otherwise, the user could 
interfere with performance optimization of processes owned by other users). Only root has the 
capability to move all pages of a process.

It can be difficult to ensure that all pages are local to a process since some text segments are 
heavily shared and there can be only one page backing an address of a text segment. This is 
particularly an issue with the C library and other heavily shared libraries.

Linux has a migratepages command-line tool to manually move pages around by specifying a 
pid and the source and destination nodes. The memory of the process will be scanned for pages 
currently allocated on the source node. They will be moved to the destination node.

NUMA SCHEDULING

The Linux scheduler had no notion of the page placement of memory in a process until Linux 
3.8. Decisions about migrating processes were made based on an estimate of the cache hotness of 
a process’s memory. If the Linux scheduler moved the execution of a process to a different NUMA 
node, the performance of that process could be harmed because its memory now needed access via 
the cross-connect. Once that move was complete the scheduler would estimate that the process 
memory was cache hot on the remote node and leave the process there as long as possible. As a 
result, administrators who wanted the best performance felt it best not to let the Linux scheduler 
interfere with memory placement. Processes were often pinned to a specific set of processors using 
taskset, or the system was partitioned using the cpusets feature to keep applications within the 
NUMA node boundaries.

In Linux 3.8 the first steps were taken to address this situation by merging a framework that will 
eventually enable the scheduler to consider the page placement and perhaps automatically migrate 
pages from remote nodes to the local node. However, a significant development effort is still needed, 
and the existing approaches do not always enhance load performance. This was the state of affairs 
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in April 2013, when this section was written. More recent information may be found on the Linux 
kernel mailing list on http://vger.kernel.org or in articles on Linux Weekly News (http://lwn.net). See, 
for example, http://lwn.net/Articles/486858/.

CONCLUSION
NUMA support has been around for a while in various operating systems. NUMA support in 
Linux has been available since early 2000 and is continually being refined. Kernel NUMA support 
frequently optimizes process execution without the need for user intervention, and in most use 
cases an operating system can simply be run on a NUMA system, providing decent performance for 
typical applications.

Special NUMA configuration through tools and kernel configuration comes into play when the 
heuristics provided by the operating system do not provide satisfactory application performance to 
the end user. This is typically the case in high-performance computing, high-frequency trading, 
and for realtime applications, but these issues recently have become more significant for regular 
enterprise-class applications. Traditionally, NUMA support required special knowledge about the 
application and hardware for proper tuning using the knobs provided by the operating systems. 
Recent developments (especially around the Linux NUMA scheduler) will likely enable operating 
systems to automatically balance a NUMA application load properly over time.

The use of NUMA needs to be guided by the increase in performance that is possible. The larger 
the difference between local and remote memory access, the greater the benefits that arise from 
NUMA placement. NUMA latency differences are due to memory accesses. If the application does 
not rely on frequent memory accesses (because, for example, the processor caches absorb most of the 
memory operations), NUMA optimizations will have no effect. Also, for I/O-bound applications the 
bottleneck is typically the device and not memory access. An understanding of the characteristics of 
the hardware and software is required in order to optimize applications using NUMA.
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